
. 
* I L  

National Aeronautics and Space Administration 
Gddard Space Flight Center 
Contract No .NAS-5-12487. 

/ 

ST-I@-10607 @& 
1 

‘ 16 

lu 0 N67  30015 

17 M A Y  1967 10 



ST -1CA -10607 

DISTRIBUTION OF MASSES IN GALAXIES ACCORDING 
TO DATA ON RADIAL VELOCITIES 

Vestnik Leningradskogo Universiteta 
Matematika, Mekhanika, Astronomiya 
No.1, w . 1 ,  137 -143, 
Izd-vo LGU, 1967 

V. S. Sizikov 

Two new ways are proposed for the solution of the Burbidge and Prender- 
gast equation. 
of the density for 4 galaxies are given. 
sented show considerable departures from the results of other authors. 

The results of calculation of the mass for 12 galaxies and 
The tables and the diagrams pre- 

* 
* * 

The data on radial velocities of points situated at various distances 
from the center of a galaxy allow us to  determine the law of mass distribu- 
tion in them. 

Wise and Maya11 worked out in 1942 [l] a method of mass and density de- 
termination in the assumption of total flattening of galaxy body; in it the 
expansion of density in series by powers relative to distance from the center 
was applied. The authors used this method to determine, in particular, the 
mass of NGC 224 (9.5 - 1O1O Mo at the distance of 210 kps) . 

An important step forward was performed in 1959 by Burbidge and Prender- 
gast [2], in whose method galaxies are not considered entirely flat, but in 
which it is assumed that the surfaces of constant density are ellipsoids of 
revolution with constant eccentricity. At the same time, expansions are also 
utilized of density, circular velocity and its square, in series by powers 
of the distance from the center. 
sed in [2] may be improved in several directions because of the following. 

According to our opinion, the method propo- 

1. A finite number of terms are utilized in the expansions (in case of 
circular velocity we refer t o  parameters). 
determined by the extent the theoretical curve for the velocity passes through 
the points of observations, which has to be estimated subjectively. As to the 

The selection of this number is 



. 
2. 

variation of the number of parameters, it generally leads to a significant 
range of masses and densities. 
through the points of observations the theoretical curves of velocity give 
a considerable smoothing of local velocity functions (and also of density) 
as this was noted by P. Pishmish [17]. 

Moreover, at a generally satisfactory passage 

2. It is desirable to deny ourselves the assumption of eccentricity 
constancy of ellipsoids, that is, of constant density surfaces. 

3 .  At sufficient galaxy inclinations to  the visual ray it is difficult 
to estimate the magnitude of contraction. 
is more appropriate to evaluate it by the dispersion of velocities. 

That is why in the given case it 

4 .  When determining the densities and masses, the systematic accounting 
of dispersion is unavailable,? except for the estimates of [Z] . 

5. The method requires significant computation work. 

Brtuidt [ 3 ]  found in 1960 a simple solution of the Burbidge integral 
equation for the case of zero sphericity. 

‘fie Burbidp equation was utilized in the work by Agekyan and Yakovleva 
[4] Cor the dctermination of 1T;asses of galaxies directly by way of numerical 
integration over observation points, without drawing the mean curve of veloci- 
ties. 
made that the density is inversely proportional to the square of the distance 
from the center. 

When searching for the correction for sphericity, the assumption is 

‘The Agekyan work (page 641 of ref.[5]) complements the indicated methods 
by the determination of the density of a uniform dispersing nucleus by its 
angular velocity and contraction. 

But, on the whole, a single approach is required for the consideration of 
a galaxy, that is, a systematic accounting of velocity dispersion and a search 
of general solutions (for the nucleus in the extranuclear region), moreover as 
simple and objective as possible. 

It is proposed in this work to resolve for the moment only a part of this 
we propose a certain improvement of the methods of [2] and [4]. problem: 

Let us consider the Burbidge C, Prendergast integral equation [2]: 

where v(R) is the circular rotation velocity at the distance R from the center 
of the galaxy in its plane; p(a) is the density as a function of the major 
semiaxis - a of the ellipsoid of revolution, which is the surface of constant- 
density; - e is the eccentricity of ellipsoid’s meridional cross-section; 
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Let us multiply both parts 

(; is the gravitational constant; - c and - c 

integrate between the limits from 0 to A, and change the order of integration. 
We shall obtain 

The inner integral in the left-hand part of (2) is computed, wherefrom 

Inasmuch as the mass, comprised within the limits of the ellipsoid of revolu- 
tion with major semiaxis A, is 

A 

(3) ( A )  == 4zc (a)  a? da, 
u 

we have 
A 

For siiiall - c the integral 

M ( A )  
is 3 small quantity by comparison with 8c Indeed, at P = const, we obtain 

'he condition of smallness of I will be so much the more satisfied for a den- 
sity decreasing with the distance, for in that case 

whereupon - -  
P I  <?2 - - 

PI an3 Pz i)eing the mean values of densities taken out of integral signs in 
rcspcctively the expressions (5) and ( 3 ) ,  as a consequence of which . -1.. 
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At the same timc the local positive density gradients do not change substan- 
tially the picture, for their influence is equi alent to the introduction 
of restricted numerical multipliers, differing little from unity, into expres- 
sions M(A)/8c and I. Therefore, the zero approximation for the mass will be 

A 

that is, the Brandt solution [3] for a plane case, or upon integration by parts 

The corresponding approximation for the density is 

Substituting p o  in (4 ) ,  and then also the subsequent approximations of P 
we shall obtain the final expression for the mass 

A 

For the particular case of solid-body rotation we assume in the first appro- 
ximation P = const, and, utilizing (4) and (6) we shall find precisely 

or 

where 

w being the angular velocity. 

As was shown by calculations with utilization of (lo), for small sp ri- 
cities ( c 4 1/s ) the subsequent to preceding term ratio in the expansion (10) 
is about equal to c. This is why not more tham three-four terms in expansion 
(10) are required For c 4 
(because of other kind of errors, a greater precision is not necessary). 

) when computing M with a precision to, e. g. 1% 
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I:or grcatcr (and, generally speaking, for any) values of sphericity 
it is possible to propose still one more method of seeking density and mass 
by using Eq.(l). 

Let us substitute the integral in Eq.(l) by a finite sum, changing para- 

But inas- 
meter R from the least possible to still greater values. 
possibility to obtain linear algebraic equations relative to P(a). 
much as the velocity enters in Eq.(l) 
directly by observation points will not provide the required precision. An 
objective way must be obtained for the search of centroid velocities. 
that effect we shall make use of one of the possible variants. 
by C(R) the velocity of the centroid and write the equality 

This provides the 

in the second power, the computations 

To 
Let us denote 

R 

where 
numerically over the observation points. 
with respect to R, we shall find 

Z(R) is the value of the integral in the left-hand part, integrated 
Then, differentiating equality (13) 

As was shown by computations, the scattering of the points in the graph for 
C(R) is substantially less than that in the graph for v(R), and the curve 
for C(R) is drawn confidently, and this is why the curve for ?(R) is found 
with as much assurance. 
pv and distance from the center, Q to the real M, p and R, it is necessary 
to take into account the inclination. 

For the transition from the visible mass fi, density 

It is easy to find that 

diere i is the angle between the visual ray and the perpendicular to the plane 
of the-plrucy; B is the projection on the pictorial plane of the angle between 
thc link of nodes and the slit, in which spectra are obtained. 

In order to illustrate the method we proceeded with calculations for 
12 galaxies having as great a diversification in the shapes of rotational 
curves as is possible. 

Expressions (8) and (11) and also (10) were integrated numerically 
curve v(R), the separate irregularities in the without drawing t.he median 
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behavior of which being then compensated. 

In case of solid (consistent) rotation the integration of (11) must 
be performed when the scattering of the points in the graph for v(R) is great 
and the inclination is difficult to establish; in the opposite case the cal- 
culations may be conducted by a more convenient relation, namely, (12). 

The calculations of masses by formulas ( 8 ) ,  (10) - (12) were controlled 
by the second method (by numerical solution of EQ.(l)), which should be 
applied in the first place for the computation of densities and for masses 
at LC 15stantial sphericites (c 3 '/5 ). 
in Table 1 (see also Figures 1- 4) 

The results of computations are compiled 

T A B L E  1 

NCC 

224 

68 1 

1068 
1097 
2903 

3504 

3556 

4826 

5055 

6503 

i33 1 

7479 

1) 1" = 1 nc 
2) 1 " = 2.211 

1"= 1ll.in 

1" = 77.5 IlC 

1" = 77.9 I1C 

1" = 29.1 nc 

1" = 96 I I C  

1" = 50 I I C  

1" = 39 /IC 

1"=50 nc 

1" -- 76 nc 

1" = 70 nc 

1" == 1i0.7 nc 

A 

150' 

47" 

25" 
1 OY25 
140" 

50" 

175" 

50" 

200" 

60" 

143" 

54" 
- 

- __ 

C 
- - 

0.2 

I /4 
115 
1 i8 
0.2 
1 !3 
0.1 
1 /2 
1 i8 
0.2 
0.15 
0.1 

1/15 
1/15 

1/10 

114 

114 

1 16 

Prev. mass determ. 
(in 1 0 ' 0 ~ ~ )  

) 9.5 [I] 1) 9.7 [5. 645 
.) 10.2 [16] 1) 8.3 [4J 

1.81-2.05 [l5] 
1.91-1.98 I . 
1.64 -2.09 

2.7 [SI 0.80 [4] 

3.7 [8] 7.14 [a] 
0.5-1.3 [7] 1.36 [4] 

0.25 
0.91 ) 0.84 [4] 

] [I31 

1.3-1.7 

1.1-1.5 
0.989- 1.32 
0.886-1.11 
7.6 [ 1 1 1  7.98 [4] 

0.770 * 
0.655 ) 

7.8-9.5 
7.7-8.2 ] [141 

2.22 [12] 6.71 [4] 

8.7 [5 p. 640, 

2.20. 
2.14 } 1151 
2.07 
1.14 [SI 

3.78 [8] 

2) 19.1 

0.955 [I] 

::i!5 ] 191 
1.825 
1.73 ] [lo] 
1.625 
1.12 
1.018 ] [l31 
0.92 
7.735 [ 111 

0.798 ] 
' 9.56 

8.59 ] [141 
5.08 [ 121 

* These data were computed on the basis of densities in ref. 1181. 

In Table 1 A denotes the major semiaxis of the ellipsoid, within the 
I~owids of which the mass has been determined. 
(for different values of sphericity c) and the references from which the 
observational material was borrowed are given in the last column. 

The computed values of masses 

The figures and Table 1 show notable discrepancies with the results of 
other authors, and in particular, the absence of ambiguity in the determination 
of masses and densities; they show also a lesser smoothness in local density 
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0 217 40 60 80 100 i2074U70- 20 D t4Oa'O 20 40 60 BO 100 120 1402 

Fig.4. NGC 2903 
a) radial velocities; 
sity for c = 1/10; 

b) computed density for c = 1/10; c )  computed den- 
Burbidge data: 1) by 7 parameters; 2) by 5 parameters 

fluctuations. 
tions of density for 4 out of 12 galaxies. 
data, not corrected for inclination, and the median curve, passing through 
them, has been computed by formula (14). 

As typical examples, we brought out in the figures the computa- 
The dots indicate the observation 
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ADD to IGA distirbution, 641 MUSEN, 643 SQUIRES, CARPlWI'ER, JDlFUW, 
542 VELEZ, 547 sIRY and 730 STAMPFL 


